
THE MAGAZINE OF THE SOCIETY FOR TECHNICAL COMMUNICATION

September 2014

WHAT IS API
DOCUMENTATION 6

HOW DO YOU BREAK INTO
API DOCUMENTATION?	 9	

WHAT FACTORS CONTRIBUTE TO
GOOD API DOCUMENTATION?	 12

LESSONS LEARNED AS A
NOVICE API WRITER	 16

HOW TO WRITE HELPFUL CODE SAMPLES	 19

HOW MUCH PROGRAMMING
DO YOU NEED TO KNOW TO WRITE
API DOCUMENTATION?	 23

The Market
Large numbers of us broke into technical writing by
documenting software that runs on personal computers.
Over the years, we have watched sales of those machines
and their software packages stagnate. The manuals and
help that we created grew gaunt under the relentless
pressure to do it faster, cheaper, and lighter. With the
rise of support-written knowledge bases (think ZenDesk,
www.zendesk.com/) and community-generated content,
many wondered if conventional documentation jobs were
destined to fade.

Now we’re witnessing dizzying growth in high tech,
driven by the shift to ubiquitous computing through
mobile devices and by distributed, cloud-based storage
and services. All of this growth depends on there being
solid and successful APIs to interconnect our devices and
services. A quick look at these resources shows that the
range of API offerings is stunning:
�� API Directory (ProgrammableWeb, www.programmable
web.com/apis/directory)

�� Government APIs (data.gov, http://catalog.data.gov/
dataset?res_format=api&_res_format_limit=0)
�� Open APIs (Wikipedia, http://en.wikipedia.org/wiki/
List_of_open_APIs)

Just how successful these APIs are has everything to do
with how quickly and easily programmers can become
power users of these new interfaces, and so everything
to do with documentation and tutorials, and us! That’s
the good news: the job market for programmer writers
has become habañero hot. Since I’ve put full-time API
documentation experience on my profile, I’ve started
receiving an eye-popping stream of unsolicited invitations
for positions with tech companies that are everyday names
to the wired crowd.

The Salaries
Not only are more API jobs becoming available, but these
are jobs that pay significantly higher than conventional ones.
In my experience, you would command hourly rates that
are 1.5 to 2 times that of non-API jobs. And, while not a

By MARY CONNOR | Member

 How
Do You

API Documentation?
Break intosh

ut
te

rs
to

ck
.c

om
/K

ut
la

ye
v

Dm
itr

y

9www.stc.org

API DOCUMENTATION

http://www.zendesk.com/
http://www.programmableweb.com/apis/directory
http://catalog.data.gov/dataset?res_format=api&_res_format_limit=0
http://en.wikipedia.org/wiki/List_of_open_APIs
http://www.programmableweb.com/apis/directory
http://en.wikipedia.org/wiki/List_of_open_APIs

salary issue, another feature of these jobs has tremendous
monetary value: API jobs are more likely to offer the option
of working remotely. However, the on-site jobs do tend to
be concentrated in specific metro areas (such as San Jose),
which have a higher than average cost of living.

Perhaps more relevant to our Great-Recession-sobered
perspective, being an API writer means being a sought-after
talent that’s in relatively high demand, with broad options
and mobility. And acquiring the skill-base of programming
writing is itself insurance, as it grants access to jobs in more
technically demanding shops, as well as job titles with more
technical requirements, such as business analyst. Any way
you look at it, your salary security improves.

The Working Environment
I associate the working environment for API writing with
being embedded with the development team that codes
the API. If you have worked within feature-based teams or
on an Agile/SCRUM team, you are already familiar with
this dynamic, being the “lone writer” that supports a group
of developers and testers, usually in service of a product
owner or product author. Your supervisor, however, may be
the development manager. Having a developer for a boss
can have huge implications for the expectations you face,
the tools you get, the deliverables you own, and the content
strategy that might be missing or discounted.

The most common Myers-Briggs personality type I’ve
encountered on these teams is INTP, a fact that I bring up
for this reason: your ability to relate to these developers and
to win their respect means your success or failure in this
job. All things are possible, but I think highly extroverted
writers, for example, could face an uphill battle with team
acceptance. I have witnessed several writers be rejected by
developers who were repelled by their manner, and it’s not
a situation that just resolves itself with time and friendly
words. If you don’t seek nerdvana among deep thinkers who
will call you out on your logical errors, you might want to
reconsider this path.

The Skillsets
As an API writer, you can find yourself exercising a
surprisingly broad set of skills, a set that you will find either
exhilarating or terrifying (or both, if you’re human):
�� Development—You will need to be able to use the shop’s
chosen IDE (such as Visual Studio or Eclipse), work with
their code files, run local builds, master their version
control system, learn their code commenting style, and
install, update, and own the API reference generation.
Yes, unfair as it sounds, you will be expected to tackle
all of the programmer and QA tools in addition to your
own documentation tools.
�� Business Analysis—You will find yourself in the position
to serve as a business analyst for the interface. In
practical terms, this means using your communications
expertise to devise and argue for stronger, intuitive, and
consistent object naming and organization, and using

your research to compare the API both with competitors
and with implicit or explicit industry standards.
�� User Experience—As with all documentation jobs, you
will still strap on your gloves to fight for a better user
experience. In the case of developer documentation,
you will look for ways to improve TTFHW (Time to First
“Hello World”), how API users get introduced to the
product, how they get set up, how they learn, and how they
get help, both from support and their peer community.
Chances are, you will be the one person on the team with
the drive and experience to make headway on UX/CX,
perhaps getting involved with support initiatives.
�� Technical Communication—As if this all weren’t enough,
you still need to be an excellent communicator, such as
Andrew Davis describes so well in his article, “How to Find
Good Programmer Writers” (www.contentrules.com/blog/
how-to-find-good-programmer-writers). Beyond your powerful
writing, bring the full package of skills that separates the
great from the competent: be empathetic, responsible,
curious, humble, resourceful, attentive, autodidactic,
passionate, precise—the writer that every project manager
would weep to lose.

The Transition
To transition from a regular technical writer who documents
GUI apps for end users to a technical writer who creates API
help for developers, you need to be well along the path to
being a developer in your own right. Yes, a developer, even if
you’ve never taken a programming course in your life.

Happily, most documentation jobs offer several key
areas in which you can develop your technical chops while
serving the larger good:
�� Authoring Tool Plumbing—Be the person on the team
who knows the authoring tool inside out and backward,
who can install it, upgrade it, back up and restore it,
configure it, and import and export its content. Be the
Web researcher who finds out how to leverage its obscure
features to solve a problem in your help system; be
the designer who braves editing the complex template
files to add Google analytics or to achieve special
Javascript effects that make the CEO take notice. Be
the tool agnostic who can do proof-of-concept projects
in any number of new and unknown tools, without any
handholding and on your own initiative. Be the analyst
who studies other help systems for useful enhancements
and persuades a developer to write you a script that will
help you implement one on your own.
�� Build Engineering—Be the person on the team who
figures out how to automate your help builds, even if the
tool doesn’t support it directly. Find ways to integrate the
help source, builds, and outputs into the existing build
process used for the code. Figure out how to publish
draft help internally as well as in beta and general
availability(GA) versions. Come up with a way to fake
conditional build behavior so that internal staff have
access to additional content that will never be released.

September 201410

http://upload.wikimedia.org/wikipedia/commons/1/1f/MyersBriggsTypes.png
http://www.contentrules.com/blog/how-to-find-good-programmer-writers/
http://www.contentrules.com/blog/how-to-find-good-programmer-writers/

Be the person who never stops finding new opportu-
nities to single-source content across file formats and
disparate uses. Be the one who learns enough about FTP
to automate the publication of content to the Web.
�� Batch and Automation—Be the person who notices that
manual doc processes are being repeated and find ways
to automate them, starting with simple DOS batch files
and Windows Task Scheduler. Improve upon processes
that require you to remember to do the right thing
in the right sequence, such as to copy files to network
locations or manually rename files to show status; find
a better way. Use the scripting tools built into your
business apps (such as Visual Basic for Applications)
to automate steps and transformations that improve
documentation quality, such as Word macros to correct
all sizing and formatting problems in hundreds of
screenshots. Make full use of variables and templates in
your tools, and explore all of the fields available, along
with the parameter switch options they offer.
�� Internal Developer Content—Be the person who
volunteers to help write and edit wiki pages to guide
new developer hires. Attend every language/tool/
methodology training that your shop offers to the
development group. Offer to manage, edit, organize,
and publish the development artifacts for the group.
Help business analysts create clearer and lovelier
diagrams and slide decks, and study the content as you
go. Attend “brain-dumps” as a scribe, and post your
notes and Web conference recordings in the repository
(creating it, if need be). Be the go-to person for
knowledge management strategy.

What I described above is the path that I journeyed down,
which led me to take over API reference projects at my
job and then to transition to full-time API documentation
responsibility. If those descriptions leave you cold, sweating,
and feeling as if you’d want any job but that, you might not
enjoy being in the hot seat as an API writer.

The Training
If you are interested in the API career path, strike the word
“training” from your consciousness and substitute the word
“studying,” because the culture of code development is one
of unceasing self-education. Even when developers nominally
finish training courses on new languages and methodolo-
gies, they know that they are never done researching and
improving their grasp of the material, which itself will never
stop mutating into new versions and forms. Development’s
tribal code is all about building and maintaining your own
technical credibility, without hand-holding.

To make this more real for you, I’ll describe how I’ve
witnessed API developer interns being treated. They are
assigned to serve a specific team member, who piles them
with tasks and problems to solve. To a fair degree, interns are
allowed to twist in the wind, to struggle to get their environ-
ments working and their projects moving. What at first seems
sadistic reveals itself to be highly illuminating: the team gets

to observe how quickly the interns teach themselves the new
domain, how resiliently they study, acquire help, and handle
frustration, and how cleverly they conquer the challenges
blocking their projects. Even if the interns resent the intellec-
tual hazing, they emerge wiser and full of confidence that they
can handle their next job assignments. They join the tribe.

So, to be a successful API writer, be prepared to join the
tribe. Think of yourself as a developer newbie, not one that
will threaten to take the job of anyone on the team, but one
who will learn just fast enough to be able to teach other
newbies. To start, take whatever programming courses are
available to you; community colleges and school district
community education programs are great resources. But
don’t let logistical challenges stop you—you can now learn
programming completely on the Web, sitting on your couch.
Try out courses from the sites below so that you can find
some that fit your learning style (see this excellent survey:
http://designzum.com/2014/03/07/best-resources-to-learn-code).
�� Coursera (https://www.coursera.org/)
�� OpenCourseWare Consortium (http://ocwconsortium.org/)
�� Codecademy (http://codecademy.com/)
�� Code Avengers (http://codeavengers.com/)
�� Code School (http://codeschool.com/)
�� Treehouse (http://teamtreehouse.com/)
�� LearnStreet (http://learnstreet.com/)
�� Udacity (https://udacity.com/)
�� CodeHS (http://codehs.com/)
�� Khan Academy (http://khanacademy.org/cs)
�� Scratch 2.0 (http://beta.scratch.mit.edu/)
�� SQLZOO (http://sqlzoo.net/)

As you complete coding courses, look for opportunities to code
solutions to small problems at work, church, or home, and
remember to record your completions and outputs on your
resume and LinkedIn profile. At the same time, start following
the blogs and sites of more technical tech writers, and join
relevant LinkedIn groups, such as the one for API documenta-
tion (http://linkedin.com/groups/API-Documentation-3709151).

The Payoff
Is API documentation more rewarding and fulfilling than
creating other types of documentation? For me, yes, for
surprisingly non-career reasons. I love having dared to face
my personal Everest, my fear that I wasn’t capable of doing this
work. I love being embedded with developers and testers as a
their supporter and peer. And, sweetest for any tech writer, I
love that these users, these API users, actually RTFM. gi

A past president of STC Austin, Mary Connor has an MA in
English and has been performing and teaching technical commu-
nication for 20 years. Currently at 3M, she has created developer
documentation and training materials for REST/SOAP services at
Telogis and several generations of API products at Advanced Solu-
tions. She is keen to capture tribal knowledge and to single-source/
automate documentation production, which opens space for the
important stuff: powerfully clear writing and diagramming. You
can contact her through her blog at www.cleverhamster.com.

11www.stc.org

API DOCUMENTATION

http://designzum.com/2014/03/07/best-resources-to-learn-code/
https://www.coursera.org/
http://www.ocwconsortium.org/
http://www.codecademy.com/
http://www.codeavengers.com/
http://www.codeschool.com/
http://teamtreehouse.com/
http://www.learnstreet.com/
https://www.udacity.com/
http://www.codehs.com/
http://www.khanacademy.org/cs
http://beta.scratch.mit.edu/
http://sqlzoo.net/
https://www.linkedin.com/groups/API-Documentation-3709151
http://www.cleverhamster.com

